
Macroscale patterns of synchrony identify complex relationships
among spatial and temporal ecosystem drivers

NOAH R. LOTTIG ,1,� PANG-NING TAN,2 TYLER WAGNER,3 KENDRA SPENCE CHERUVELIL,4

PATRICIA A. SORANNO ,5 EMILY H. STANLEY ,6 CAREN E. SCOTT,5,8 CRAIG A. STOW,7 AND SHUAI YUAN
2

1University of Wisconsin Center for Limnology, Trout Lake Station, 3110 Trout Lake Station Dr., Boulder Junction, Wisconsin 54531 USA
2Department of Computer Science & Engineering, Michigan State University, 428 South Shaw Lane, Room 3115,

East Lansing, Michigan 48824 USA
3U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University,

420 Forest Resources Building, University Park, Pennsylvania 16802 USA
4Department of Fisheries and Wildlife & Lyman Briggs College, Michigan State University, Natural Resources Building,

480 Wilson Road, Room 334D, East Lansing, Michigan 48824 USA
5Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, 480 Wilson Road, Room 334D,

East Lansing, Michigan 48824 USA
6University of Wisconsin Center for Limnology, 680 North Park Street, Madison, Wisconsin 53706 USA

7NOAA Great Lakes Environmental Research Laboratory, 4840 South State Road, Ann Arbor, Michigan 48108 USA

Citation: Lottig, N. R., P.-N. Tan, T. Wagner, K. S. Cheruvelil, P. A. Soranno, E. H. Stanley, C. E. Scott, C. A. Stow, and
S. Yuan. 2017. Macroscale patterns of synchrony identify complex relationships among spatial and temporal ecosystem
drivers. Ecosphere 8(12):e02024. 10.1002/ecs2.2024

Abstract. Ecology has a rich history of studying ecosystem dynamics across time and space that has
been motivated by both practical management needs and the need to develop basic ideas about pattern
and process in nature. In situations in which both spatial and temporal observations are available, similari-
ties in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying pro-
cesses that create patterns over space and time. We used pattern analysis algorithms and data spanning
22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub-
continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And,
what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of
water clarity among lakes is not spatially structured at sub-continental scales. Our results also provide
strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal
patterns of water clarity. This analysis of long-term patterns of water clarity and possible drivers
contributes to understanding of broad-scale spatial patterns in the geography of synchrony and complex
relationships between spatial and temporal patterns across ecosystems.
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INTRODUCTION

Ecology has a rich history of studying ecosys-
tem dynamics across time and space that has been
motivated by both practical management needs
and the need to develop basic ideas about pattern

and process in nature (Wiens 1989, Turner et al.
2001). To study spatial patterns, ecologists have
typically used single point in time samples from
multiple systems distributed across a variety of
spatial gradients, whereas temporal patterns are
typically revealed through an examination of one
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or a few well-sampled systems. Indeed, spatially
extensive data are often used to compensate for
the deficit in long-term data via studies using
space-for-time substitutions (Pickett 1989, Fukami
and Wardle 2005, Lester et al. 2014). Ecologists
have long recognized that this approach is an
imperfect substitute for long-term studies because
it assumes that processes that create differences
among sites also determine change through time
—an assumption that may not always be met
(Pickett 1989, Fukami and Wardle 2005). In situa-
tions in which both spatial and temporal observa-
tions are available, similarities in temporal
behavior among sites (i.e., synchrony) provide a
means of understanding underlying processes
that create patterns over space and time (Magnu-
son et al. 2004). If the space-for-time assumption
holds, then sites in a landscape that are similar
may also be expected to be synchronous. Further,
synchronous behavior among a pair of ecosys-
tems suggests shared drivers and responses to
those drivers. Thus, examination of spatial aspects
of synchrony should reveal the processes shaping
these patterns (the geography of spatial syn-
chrony, sensu Walter et al. 2017), providing a
means of evaluating how or if space-for-time
approaches may be used.

Lakes represent a useful model system for
studying spatial and temporal patterns. Across
large areas, variation among lakes across space
(e.g., lake water quality; Read et al. 2015) and
through time (e.g., ice cover, temperature, hypoxia,
and salinity; Magnuson et al. 2000, O’Reilly et al.
2015, Jenny et al. 2016, Dugan et al. 2017) can often
be explained by a combination of drivers acting at
multiple spatial scales (i.e., ecological context).
There is also a long history of studying synchrony
in lakes, albeit mainly at local to regional spatial
extents (e.g., Magnuson et al. 1990, Soranno et al.
1999, Jane et al. 2017). The presence of both local-
and regional-scale drivers provides a compelling
challenge for considering spatial patterns in syn-
chrony and the capacity to infer processes shaping
both spatial patterns and temporal dynamics.

Although data scarcity has been a constraint for
understanding long-term change, datasets are
becoming longer, and integrated databases cover-
ing broad spatial extents are emerging (O’Reilly
et al. 2015, Read et al. 2017, Soranno et al. 2017).
Extensive datasets of lake water clarity are notable
(e.g., Lottig et al. 2014) because this ecosystem

variable has been measured consistently for many
decades and across many regions and countries
using simple, reliable equipment (i.e., a Secchi
disk). Water clarity plays an important role in reg-
ulating many physical, chemical, and biological
dynamics within lakes and is responsive to chang-
ing ecological context such as land use conversion
(Bruhn and Soranno 2005), climate change (Gunn
et al. 2001, Rose et al. 2017), and introduction of
invasive species (Walsh et al. 2016). However, few
studies have examined how water clarity in a
large number of lakes in different settings has
changed through time.
We used pattern analysis algorithms and data

spanning 22–25 yr from 601 lakes across
1,800,000 km2 to ask three questions: What are the
temporal patterns of lake water clarity at
sub-continental scales? What is the geography of
spatial synchrony for lake water clarity? And, what
are the drivers of spatial and temporal patterns in
lake water clarity? Depending on the answers to
these questions, there are three possible outcomes
that will help infer the likely underlying processes
controlling the spatial and temporal patterns in
water clarity: (1) If regional ecological context (e.g.,
climate) drives lake water clarity over time, then
lakes within regions should be synchronous and
temporal patterns should be associated with cli-
mate (or other regional-scale) variables (2) if local
ecological context (e.g., watershed area, lake depth)
drives water clarity over time, then lakes that are
synchronous may be dispersed across regions but
share similar local features; or (3) if ecological con-
text at multiple different scales (e.g., regional cli-
mate and local watershed characteristics) interact
(i.e., cross-scale interactions; Peters et al. 2007) to
influence water clarity over time, then there should
be complex spatial and temporal patterns such that
synchrony among lakes is not spatially structured,
nor strongly related to local features.

METHODS

We used lake water clarity observations, mea-
sured as Secchi depth readings (hereafter water
clarity) from the Lake GeoSpatial temporal data-
base (LAGOS-NELIMNO version 1.054.01; Soranno
et al. 2015, Lottig et al. 2017) from the northeast-
ern-most 17 U.S. states (Fig. 1). We restricted our
analysis to measurements taken between 15th June
and 15th September when most lakes in the study
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area are thermally stratified and to lakes with at
least a single summer value for 22 + yr between
1987 and 2012. For each lake and year, we calcu-
lated the median summer water clarity value. The
final dataset contained 601 lakes with 22–25 (me-
dian = 24) annual estimates of water clarity for
each individual lake (Fig. 2). Of the 14,212 annual
estimates of water clarity generated in this study,
only 2% were based on a single observation and
the median number of discrete water clarity mea-
surements for each of the 601 lakes over the 25-yr
study period was 223 with a median intra-annual
coefficient of variation of approximately 16%.
Water clarity time series were standardized (u = 0,
r = 1) to account for differences in scale.

We also examined several variables that
describe the ecological context (hereafter drivers)
of each individual lake (Table 1) from LAGOS-
NEGEO (version 1.03; Soranno et al. 2015, 2017),
including lake characteristics such as surface area
and maximum depth, climate variables including
annual and 30-yr normal of precipitation and tem-
perature (Arguez et al. 2012), and landscape char-
acteristics such as watershed area, land use/land
cover, and annual average runoff (Gebert et al.
1987). Detailed information about the variables
used in this study (Table 1) is found in the Supple-
mental Files of Soranno et al. (2015). In addition
to the drivers listed in Table 1, annually resolved
(i.e., 25-yr record) values for mean temperature
and total precipitation were derived from monthly
PRISM data at the HUC8 spatial scale.
We clustered lakes that shared similar long-

term water clarity patterns using kernel k-means
clustering (Sch€olkopf et al. 1998) to identify
groups of synchronous lakes (sensu Finazzi et al.
2015). We employ dynamic time warping (DTW;
Berndt and Clifford 1994) as the distance mea-
sure for our kernel k-means because it allowed
us to measure time series that contained missing
values and account for small time lags between
the time series. First, DTW aligns two time series
to account for any lags before computing their
pairwise distance. We allowed time series to lag
� 1 yr. The DTW distance for a pair of lakes is
then computed based on the minimum distance
of all possible alignments of their water clarity
time series. Kernel k-means clustering with DTW
distance measure was implemented in Matlab
(R2015). We use the Gaussian radial basis func-
tion to transform the DTW distances to their ker-
nel similarities and assign each lake to the cluster
with highest average kernel similarity.
We relied on a combination of two factors to

discern the number of long-term water clarity
patterns. First, we examined scree plots for a
sharp break that indicates increases in similarity
within each cluster (Jain and Dubes 1988,
Appendix S1: Fig. S1a). However, no sharp break
existed; a gradual transition occurred between 8
and 15 clusters such that the increase in similar-
ity between lakes within each cluster (measured
as a decrease in DTW distance) approximated
the decrease that would have occurred from
increasing the number of clusters randomly. We
used silhouette coefficients to determine the most

Fig. 1. Spatial extent of LAGOS-NE database and this
study including all lakes greater than four hectares (blue),
all lakes that have at least a single water clarity measure-
ment (11,348 lakes; red), and the 601 lakes included in
this study with 22 + yr of water clarity data (black).

Fig. 2. Median water clarity values from the 22 + yr
records for each of the 601 lakes included in this study.
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appropriate number of clusters within this range
(8–15 clusters). These coefficients, which range
from �1 (less similar) to 1 (more similar), identify
how similar a specific water clarity time series is
to its assigned cluster along with how it com-
pares to other clusters (Rousseeuw 1987). Mean
silhouette coefficient for each set of clusters and
the percentage of clusters that had positive mean
silhouette coefficients (Appendix S1: Fig. S1a)
suggested that the long-term water clarity pat-
terns were best characterized by eight groups of
synchronous lakes (i.e., clusters).

Once clusters were identified, we fitted models
to quantify the average temporal trend across all
lakes in each cluster. A normal distribution was

assumed for standardized water clarity at site i
and year t(yt,i), and the model was as follows.

yi;t ¼ Nða þ gi þ yt;r2Þ
where a is the overall intercept, gi is a random
lake effect (an adjustment to the overall intercept,
allowing each lake to differ in average water clar-
ity; gi �Nð0;r2

gÞ), and yt is a random year effect,
representing the common temporal trend for all
lakes in a given cluster. Bayesian estimation was
used for parameter estimates, where diffuse pri-
ors were used for a and rg, and a Gaussian ran-
dom walk prior of order 1 was used for the
temporal random effect (Wagner et al. 2016). All
models were fitted in WinBUGS executed from

Table 1. Ecological context variables used to explain the spatial and temporal patterns in water clarity

Ecologic context
characteristics Variables Spatial extent of calculation

Lake and watershed
characteristics

Lake area (ha) Lake
Maximum lake depth (m) Lake

Median Secchi depth of lake across time (m) Lake
Lake connectivity class (categorical)† Lake

Watershed area (ha) Watershed
Watershed area/lake area ratio (unitless) Watershed
Slope of land around each lake‡ (degrees) 100-m, 500-m buffer, and watershed

Terrain roughness index§ (m) 100-m, 500-m buffer, and watershed
Watershed land
use/cover

Open water (%) 100-m, 500-m buffer, and watershed
Developed, open space (%) 100-m, 500-m buffer, and watershed
Developed, low intensity (%) 100-m, 500-m buffer, and watershed

Developed, medium intensity (%) 100-m, 500-m buffer, and watershed
Developed, high intensity (%) 100-m, 500-m buffer, and watershed

Barren land (%) 100-m, 500-m buffer, and watershed
Deciduous forest (%) 100-m, 500-m buffer, and watershed
Evergreen forest (%) 100-m, 500-m buffer, and watershed
Mixed forest (%) 100-m, 500-m buffer, and watershed
Shrub/scrub (%) 100-m, 500-m buffer, and watershed
Grassland (%) 100-m, 500-m buffer, and watershed
Pasture/hay (%) 100-m, 500-m buffer, and watershed

Cultivated crops (%) 100-m, 500-m buffer, and watershed
Woody wetlands (%) 100-m, 500-m buffer, and watershed

Emergent herbaceous wetlands (%) 100-m, 500-m buffer, and watershed
Climate 30-yr normal precipitation (mm) HUC 12

30-yr normal temperature (degrees C) HUC 12
Categorical value grouping annual temperature patterns HUC 8
Categorical value grouping annual precipitation patterns HUC 8

Hydrology Runoff (in/year) HUC 12
Baseflow index (%) HUC 12

† Isolated (lakes with no inflow or outflow permanent streams), headwater (lakes at the headwater of a stream network),
drainage (lakes connected to surface waters through inflow streams, with no upstream lakes ≥10 ha), drainage-UPLK (lakes
connected to surface water through inflowing streams, with at least one upstream lake ≥10 ha).

‡ Mean of the slope of the cells within the zone, where the slope is calculated as the slope at each cell with respect to its
immediate neighbors (the cell size is 10 m square).

§ Mean terrain ruggedness index (TRI) of cells within the zone, where TRI at each cell is the absolute difference in meters
between the elevation of the focal cell and its immediate neighbors (the cell size is 10 m square).
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within R (R Core Team 2017). To assess conver-
gence, we examined the scale reduction factor for
each parameter as well as examined trace plots.
All results are summarized as posterior means
and 95% credible intervals.

To identify the spatial drivers of water clarity,
we fit the lake-specific median water clarity value
to driver variables that characterize the ecological
setting of lakes (see Table 1) using random forest
(RF) models in regression mode (Liaw and
Wiener 2002; 10,001 trees). To interpret which
individual drivers were related to median water
clarity, the most important predictor variables
were identified using RF variable selection (Gen-
uer et al. 2015). To further determine the ecologi-
cal relevance of predictor variables, we derived an
estimate of effect size (Read et al. 2015) that char-
acterized the average magnitude of functional
responses to specific predictor variables. Finally,
to identify the drivers of long-term water clarity
patterns, we used RF models, as described above,
except in classification mode to quantify the rela-
tionships between driver variables (Table 1) and
groups of synchronous lakes (i.e., cluster member-
ship). Because the number of lakes was not
balanced across the eight cluster categories
(median = 72, min = 44, max = 138), the sample
size drawn from each category was set to the min-
imum number of lakes in each group. In essence,
this analysis determines whether lakes that share
common long-term water clarity patterns also
share similar ecological setting attributes.

The ecological setting variables that we includ-
ed in the above RF model were static and thus are
not temporally resolved. We used autoregressive
moving average with exogenous inputs (ARMAX)
models (Hyndman and Khandakar 2008) to exam-
ine whether long-term patterns in climate were
related to long-term patterns in water clarity
(sensu Rose et al. 2017). Autoregressive moving
average with exogenous inputs models are similar
to standard ARMAmodels, which can represent a
wide variety of ecological processes (Ives et al.
2010), except they include temporal independent
variables (X). These models were fit with annually
resolved total precipitation and mean summer
temperature as the independent variables. Model
results were summarized using the total variance
explained by the ARMAXmodels.

All statistics, unless otherwise described, were
conducted using R (R Core Team 2017). All water

clarity, geophysical, and climate data are avail-
able online (Lottig et al. 2017).

RESULTS

We identified eight synchronous patterns
across the study region (Fig. 3). Qualitatively, the
patterns can be classified as linear increases
(Cluster 2), cycles of differing frequencies (Clus-
ters 1, 3, 5, 6), thresholds (Clusters 7 and 8), and
relatively stationary (i.e., minimal change; Clus-
ter 4). The spatial distribution of lakes from
which these patterns emerged was not con-
strained to any specific area within the study
region (Fig. 4). All eight clusters were distributed
across the entire latitudinal and longitudinal gra-
dients contained in the study extent. In other
words, there was little evidence of spatially
structured synchrony in water clarity at macro-
scales. However, the patterns observed in Cluster
6 were most common in the northeastern region
and those in Cluster 4 were most common in the
southwestern-most region of the study extent.
Multiple lines of evidence suggest that distance

between lakes had little influence on strength of
synchrony among lakes. The normalized fre-
quency of lakes separated by the equal spatial
distances belonging to the same cluster (i.e., syn-
chronous long-term pattern) vs. a different cluster
(i.e., asynchronous long-term pattern) was virtu-
ally identical across the entire sub-continental spa-
tial extent (Fig. 5a). Likewise, an analysis of
synchrony between all lake pairs (Fig. 5b) indi-
cated that sometimes the most synchronous lake
(measured using Pearson’s correlation coefficient)
was located nearby and other times the most
synchronous lake was located 2000+ km away.
Approximately 9% of the most synchronous lake
pairs were located within 50 km, while the
remaining 91% were relatively equally distributed
across the remaining sub-continental spatial
extent captured in this study (Fig. 5c).
We found that 12 measures of ecological con-

text explained 70.7% of the variation in median
water clarity in our 601 lakes (Appendix S1:
Fig. S2). The top five predictors explained 63.3%
of the variation—maximum lake depth, drainage
basin-to-lake area ratio, percent woody wetlands
within the 500-m buffer around a lake, water-
shed slope, and mixed forest land cover within
the watershed. Effect sizes, which show the
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average magnitude of functional responses of
specific predictor variables (Appendix S1:
Fig. S3), ranged from 0.12 to 0.57 (scale 0–1).
Maximum lake depth was both the most impor-
tant predictor in the RF model and the parameter
with the largest effect size. Watershed slope (ef-
fect size = 0.43) and the amount of mixed forest
within the watershed (effect size = 0.32) were
intermediate in terms of variable importance but
had large effect sizes. The percentage of woody
wetland land cover within 500 m of a lake dis-
played the greatest disconnect between variable
importance (third) and effect size (smallest), sug-
gesting that while this was an important factor
for predicting median water clarity, its effect on
water clarity values was small.

On the other hand, while we could explain a
large percentage of the variation in median water
clarity among lakes, the RF model used to deter-
mine whether driver variables were related to
each lake’s cluster assignment (i.e., lakes with syn-
chronous patterns) was not significant (P > 0.05).
The overall accuracy of the classifier model was
26% (95% confidence interval 22–29%), and the
kappa value was 15%, which is indicative of a
poorly performing model (Fleiss 1981). Therefore,
we did not attempt to determine which driver
variables were related to long-term patterns and
the effect sizes of those parameters. We also
attempted to relate the long-term water clarity
patterns in the 601 lakes to annual precipitation
and mean annual temperature using temporally
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Fig. 3. Long-term (22+ yr) water clarity patterns for 601 lakes spread across an eight-state region. Standardized
water clarity patterns (gray lines), common trend (solid black lines), and 95% credible intervals (dashed black
lines). Clusters were determined using a kernel k-means clustering with dynamic time warping distance as the sim-
ilarity measure. Average (common) trend for each cluster was determined using Bayesian random walk model.
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explicit ARMAX models to determine whether
we could simply model observed changes in
water clarity from precipitation and temperature
alone. These models also failed to explain a signif-
icant amount of the interannual variability in
water clarity of individual lakes (Appendix S1:
Fig. S4). The variance explained by ARMAX mod-
els ranged from 0% to 82% (median = 7.7%) with
75% of the models having r2 ≤ 0.16. Conse-
quently, in addition to the ecological context of

lakes having little influence on long-term water
clarity patterns, our results suggest that simple cli-
mate measures such as annual precipitation and
mean annual temperature are not related to inter-
annual patterns of water clarity.

DISCUSSION

Analysis of 25-yr records from 601 lakes
revealed eight synchronous patterns of water

Cluster 1 Cluster 2

Cluster 3 Cluster 4

Cluster 5 Cluster 6

Cluster 7 Cluster 8

Fig. 4. Spatial location of lakes representing the eight distinct long-term water clarity patterns identified from
the clustering analysis. Cluster-specific lakes are shown in red, and all lakes with long-term data in black.
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clarity change. Use of data-intensive analytical
techniques allowed us to identify groups of syn-
chronous time series that were robust to common
problems in time series analyses including inva-
lid assumptions about shapes of patterns and
missing data. However, despite the occurrence of
a relatively small number of temporal patterns,
synchrony in water clarity among lakes was not
spatially structured. Further, while the spatial
variation in water clarity was well explained by
12 measures of ecological context, the determi-
nants of spatial variation (or any other variable
considered) in water clarity could not explain

why groups of lakes had similar long-term pat-
terns, providing evidence that the underlying
assumption in space-for-time substitution studies
—that drivers of ecosystem properties across
space are similar to those through time—does
not hold for lake water clarity and potentially
other water quality variables.
Consistent with recent analyses of long-term

observations in water clarity (Lottig et al. 2014),
nutrients (Oliver et al. 2017), and temperature
(O’Reilly et al. 2015), a majority of long-term pat-
terns could not be significantly characterized by
linear models and all but one of the synchronous
patterns in this study were non-linear. Such per-
vasive non-linear patterns emphasize the basic
challenge of identifying, understanding, and
predicting temporal dynamics of ecosystems.
However, given that ecosystem properties often
demonstrate complex, non-linear temporal
dynamics (Groffman et al. 2006), it is not surpris-
ing that most of the eight patterns were non-
linear, nor that the patterns of change occurred at
different temporal frequencies.
We did not find evidence for spatially struc-

tured synchrony in water clarity at any spatial
scale. When lake dynamics are strongly correlated
with a given driver, suites of lakes are expected to
change in a similar manner at the same scale as
the driver (Magnuson et al. 1990, Vogt et al.
2011). In particular, synchrony has frequently
been linked to a variation in climate conditions
for a range of ecosystem types and attributes (e.g.,
Batchelder et al. 2012, Defriez and Reuman 2017),
including lakes (Baines et al. 2000). While water
clarity can significantly differ between high and
low precipitation years at a regional scale (Rose
et al. 2017), we found that annual precipitation
and mean annual temperature were not related to
interannual variability in lake-specific water clar-
ity. However, it is important to note that two to
four decades of continuous data may be required
to detect climate signals in water quality data
(Henson et al. 2016) and statistical estimates from
short time series can be uncertain (Ives et al.
2010). Thus, there is clearly a need to continue col-
lecting data and expanding water quality time
series to better understand how climatic trends
may be influencing the patterns emerging in
aquatic ecosystems at macroscales.
The absence of areas of synchrony argues

against one or a few common drivers responsible

Fig. 5. Comparison of how similar water clarity val-
ues are between all pairs of lakes as a function of dis-
tance between lake pairs. (a) Normalized frequency of
lakes that have similar trend vs. a different trend based
on distance between lakes; (b) maximum synchrony in
water clarity observed between one of the 601 lakes
and the remaining 600 lakes as a function of how far
the most synchronous lake is away, and (c) histogram
showing the distribution of how far away the most
synchronous lake is for each of the 601 lakes within
the study region and weighted by the frequency of all
lakes within each bin.
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for shaping temporal dynamics of water clarity
(prediction 1) as it is clear from our results and
others (e.g., O’Reilly et al. 2015) that lakes
located in close spatial proximity are just as
likely to have similar long-term patterns as they
are to exhibit differences in those same long-term
patterns. O’Reilly et al. (2015) concluded that
“spatially structured synchrony in lakes is the
exception not the norm” based on an analysis of
global long-term lake temperature trends and
our results reinforce this finding for water clarity
as well with 2.5 times more lakes.

Finally, our results highlight that predictors
related to spatial variation in ecosystem state can
and do differ from those related to temporal vari-
ation. We were able to account for ~70% of the
variation in average water clarity in 601 lakes.
Across sub-continental to continental spatial
scales, a similar proportion of variation in lake
chemistry was explained by a combination of
local and regional drivers (e.g., Read et al. 2015).
However, the same set of drivers that explained
spatial variation among the 601 lakes in this
study did not explain differences among the tem-
poral patterns in water clarity in these lakes,
which potentially calls into question the utility of
space-for-time substitutions for understanding
temporal dynamics of water quality variables in
lakes at large spatial scales.

Our inability to explain 25-yr temporal patterns
in water clarity with well-known ecological con-
text variables could be due to one of two reasons,
both of which warrant further investigation. First,
temporal patterns may be related to some ecologi-
cal context feature that we did not include in the
analysis. While we considered many of the vari-
ables known to be related to water clarity, data
related to biotic drivers could not be included
despite the fact that they have the potential to
affect water clarity (e.g., Sanderson 1998, Baines
et al. 2000, Walsh et al. 2016). Second, complex
interactions among multi-scaled drivers likely
contributed to our inability to explain temporal
patterns. There is a growing number of examples
of drivers at multiple spatial scales that interact to
influence spatial patterns in ecosystem variables
(Soranno et al. 2014), but quantifying these inter-
actions is challenging and clearly an area for
future research. At macroscales, one of the major
challenges associated with identifying and
quantifying these cross-scale interactions is that

most of the data available to explain long-term
water quality trends (along with many other
ecosystems features) are static, but identifying
spatio-temporal cross-scale interactions requires
temporally dynamic variables quantified at broad
spatial scales. Land use/cover variables based on
remotely sensed images provide a particularly
good example of this challenge; input data
extracted from one or a few points in time often
do not capture the temporal changes in land-
scape structure that may be influencing lake
conditions.
In conclusion, this analysis of long-term

patterns of water clarity and possible drivers
contributes to understanding of spatial and tem-
poral patterns of ecosystems at macroscales,
including insight into broad-scale spatial pat-
terns in the geography of synchrony and com-
plex relationships between spatial and temporal
patterns across ecosystems. These analyses also
highlight the importance of long-term data and
the need to continue generating long-term con-
tinuous water quality observations in order to
better understand the long-term trends emerging
in aquatic ecosystems at macroscales and how
ecosystems are responding to the complex envi-
ronmental changes that characterize our entry
into the Anthropocene.
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